Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors.
نویسندگان
چکیده
Vertebrate somitogenesis comprises the generation of a temporal periodicity, the establishment of anteroposterior compartment identity, and the translation of the temporal periodicity into the metameric pattern of somites. Molecular players at each of these steps are beginning to be identified. Especially, members of the Notch signaling cascade appear to be involved in setting up the somitogenesis clock and subsequent events. We had previously demonstrated specific expression of the mHey1 and mHey2 basic helix-loop-helix (bHLH) factors during somitogenesis. Here we show that perturbed Notch signaling in Dll1 and Notch1 knockout mutants affects this expression in the presomitic mesoderm (PSM) and the somites. In the caudal PSM, however, mHey2 expression is maintained and thus is likely to be independent of Notch signaling. Furthermore, we analysed the dynamic expression of the respective chicken c-Hey1 and c-Hey2 genes during somitogenesis. Not only is c-Hey2 rhythmically expressed across the chicken presomitic mesoderm like c-hairy1, but its transcription is similarly independent of de novo protein synthesis. In contrast, the dynamic expression of c-Hey1 is restricted to the anterior segmental plate. Both c-Hey genes are coexpressed with c-hairy1 in the posterior somite half. Further in vitro and in vivo interaction assays demonstrated direct homo- and heterodimerisation between these hairy-related bHLH proteins, suggesting a combinatorial action in both the generation of a temporal periodicity and the anterior-posterior somite compartmentalisation.
منابع مشابه
Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation.
Somitogenesis is thought to be controlled by a segmentation clock, which consists of molecular oscillators in the Wnt3a, Fgf8 and Notch pathways. Using conditional alleles of Ctnnb1 (beta-catenin), we show that the canonical Wnt3a/beta-catenin pathway is necessary for molecular oscillations in all three signaling pathways but does not function as an integral component of the oscillator. Small, ...
متن کاملLocalized and Transient Transcription of Hox Genes Suggests a Link between Patterning and the Segmentation Clock
During development, Hox gene transcription is activated in presomitic mesoderm with a time sequence that follows the order of the genes along the chromosome. Here, we show that Hoxd1 and other Hox genes display dynamic stripes of expression within presomitic mesoderm. The underlying transcriptional bursts may reflect the mechanism that coordinates Hox gene activation with somitogenesis. This me...
متن کاملSprouty4, an FGF Inhibitor, Displays Cyclic Gene Expression under the Control of the Notch Segmentation Clock in the Mouse PSM
BACKGROUND During vertebrate embryogenesis, somites are generated at regular intervals, the temporal and spatial periodicity of which is governed by a gradient of fibroblast growth factor (FGF) and/or Wnt signaling activity in the presomitic mesoderm (PSM) in conjunction with oscillations of gene expression of components of the Notch, Wnt and FGF signaling pathways. PRINCIPAL FINDINGS Here, w...
متن کاملMespo: a novel basic helix-loop-helix gene expressed in the presomitic mesoderm and posterior tailbud of Xenopus embryos
We have isolated a novel gene from Xenopus, called Mespo, which encodes a protein containing a basic helix-loop-helix (bHLH) motif characteristic of a family of transcriptional activators. Mespo expression begins at the gastrula stage and continues throughout tailbud stages; expression occurs in the presomitic mesoderm and the posterior tailbud. Mespo has high similarity to a subfamily of bHLH ...
متن کاملThe Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos.
Segmentation of the vertebrate embryo begins when the paraxial mesoderm is subdivided into somites, through a process that remains poorly understood. To study this process, we have characterized X-Delta-2, which encodes the second Xenopus homolog of Drosophila Delta. Strikingly, X-Delta-2 is expressed within the presomitic mesoderm in a set of stripes that corresponds to prospective somitic bou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 227 1 شماره
صفحات -
تاریخ انتشار 2000